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Full rank principal component analysis (FR-PCA) is a special form of principal component

analysis (PCA) which retains all nonzero components of PCA. Generally speaking, it is hard to
estimate how the accuracy of a classi¯er will change after data are compressed by PCA. However,

this paper reveals an interesting fact that the transformation by FR-PCA does not change the

accuracy of many well-known classi¯cation algorithms. It predicates that people can safely use
FR-PCA as a preprocessing tool to compress high-dimensional data without deteriorating the

accuracies of these classi¯ers. The main contribution of the paper is that it theoretically proves

that the transformation by FR-PCA does not change accuracies of the k nearest neighbor, the

minimumdistance, support vectormachine, largemargin linear projection, andmaximum scatter
di®erence classi¯ers. In addition, through extensive experimental studies conducted on several

benchmark face image databases, this paper demonstrates that FR-PCA can greatly promote the

e±ciencies of above-mentioned¯ve classi¯cationalgorithms in appearance-based face recognition.

Keywords : Pattern classi¯cation; principal component analysis; dimension reduction; face

recognition.

1. Introduction

Full rank principal component analysis (FR-PCA)12,26,33 is a special form of principal

component analysis (PCA) which retains all nonzero components of PCA. Unlike

PCA which has widely been studied in the ¯eld of appearance-based face

recognition3,5,8,9,13,14,16�18,22,23,29�32 FR-PCA only arouses attentions of a few

researchers in recent years. To avoid the computational di±culty of a well-known

facial feature extraction algorithm, N-LDA4 when applied to high-dimensional face
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image data, Huang et al.12 suggested that before applying N-LDA, people should use

FR-PCA to reduce the dimensionality of the data at ¯rst. What is important is that

Zhao et al.33 had theoretically proven that the transformation by N-LDA is equiv-

alent to the transformation by FR-PCA plus N-LDA.

By using the generalized scatter di®erence instead of the generalized Rayleigh

quotient as a class separability measure, the feature extraction algorithm—multiple

maximum scatter di®erence (MMSD)26 readily avoids the singularity problem which

conventional linear discriminant analysis methods such as Fisher linear discriminant

analysis and Foley�Sammon discriminant analysis usually encounter in face recog-

nition. It will be very time-expensive or even impossible to perform MMSD directly

on high-dimensional face image data. To deal with the computational di±culty, Song

et al.26 embedded a FR-PCA stage into the facial feature extraction algorithm and

strictly proved that the transformation by FR-PCA plus MMSD is equivalent to the

transformation by MMSD.

These two papers well demonstrate that FR-PCA, as a data preprocessing tool,

cannot only greatly save computational times consumed by these two feature

extraction algorithms but also retain their e®ectiveness in face recognition. However,

as a data preprocessing tool, how FR-PCA will a®ect the recognition accuracy of a

classi¯cation algorithm has so far not been seriously studied.

Generally speaking, it is hard to estimate how the accuracy of a classi¯er will

change after data are compressed by PCA. We ¯nd an interesting fact that the

transformation by FR-PCA does not change the recognition accuracy of many well-

known classi¯cation algorithms. It predicates that we can use FR-PCA to compress

data without deteriorating the accuracies of these classi¯ers.

Lee and Landgrebe15 ever introduced two interesting concepts: discriminantly re-

dundant feature and discriminantly informative feature. In other words, a feature is

discriminantly redundant if an error of the Bayesian classi¯er remains unchanged when

it is taken out of the feature set. Otherwise, it is discriminantly informative. Since we

cannot train a truly Bayesian classi¯er in practice, whether a feature is discriminantly

redundant or discriminantly informative is classi¯er-dependent. Thus, we extend the

concept as follows: A feature is discriminantly redundant for a given classi¯er if the

recognition accuracy of the classi¯er remains unchanged when it is taken out of the

feature set. Although it is hard to judge whether a given feature is discriminantly re-

dundant or not in general,we can usually judgewhether a given feature is discriminantly

redundant or not for a particular classi¯er. In fact, our theoretical studies presented in

this paper show that each component of PCA with zero variance is a discriminantly

redundant feature for the k nearest neighbor (k-NN),33 theminimumdistance (MD, also

named as the centroid),6 support vector machine (SVM),27 large margin linear projec-

tion (LMLP),24 and maximum scatter di®erence (MSD)25 classi¯ers.

The contribution of this paper is twofold: ¯rst, it reveals a series of theoretical

properties of FR-PCA which are especially helpful for high-dimensional data clas-

si¯cation by rigorous mathematical proofs; second, through extensive experimental

studies conducted on several benchmark face image databases, it demonstrates that
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FR-PCA can greatly promote the e±ciencies of k-NN, MD, SVM, LMLP, and MSD

classi¯cation algorithms in appearance-based face recognition.

The rest of the paper is organized as follows: in Sec. 2, we will introduce the concept

of FR-PCA. In Sec. 3, we will study the impact of FR-PCA on accuracies of twomulti-

category classi¯cation algorithms. In Sec. 4, the impact of FR-PCA on accuracies of

three binary classi¯cation algorithms is studied. In Sec. 5, we evaluate the impact of

FR-PCA on e±ciencies of aforementioned ¯ve classi¯ers through extensive experi-

mental studies conducted on several benchmark face image databases. Finally, in

Sec. 6, we will o®er a brief conclusion and several suggestions for future work.

2. The Full Rank Principal Component Analysis

Assume u1; . . . ;uN 2 Rd to be a set of d-dimensional training samples. The total

scatter matrix of these samples is de¯ned as follows:

ST ¼
XN
i¼1

ðui �mÞðui �mÞT 2 Rd�d; ð1Þ

where

m ¼ 1

N

XN
i¼1

ui ð2Þ

is the average sample.

Since ST is a positive semi-de¯nite matrix, its eigenvalues are all non-negative real

numbers. Let �1; . . . ; �d be all of the eigenvalues of ST in decreasing order and

’1; . . . ; ’d their corresponding orthonormal eigenvectors.

On account of the fact that ’1; . . . ; ’d is an orthonormal basis of Rd, each vector

x 2 Rd can be represented as x ¼Pd
i¼1ð’T

i xÞ’i, i.e. the linear combination of all of

its components. By choosing part principal components, say, retaining the ¯rst n

principal components and omitting the rest, we obtain an approximation of x asPn
i¼1ð’T

i xÞ’i. The matrix �n ¼ ½’1; . . .’n� 2 Rd�n is called the transformation

matrix of PCA, which can be used to compress a d-dimensional sample vector x to a

n-dimensional feature vector �T
nx. Since n (a parameter chosen by the user) is

usually smaller than d (the dimension of the input space), PCA is often used as a

feature extraction or dimension reduction technique.

If the rank of ST is r (r � minðd;N � 1Þ), then all eigenvalues of ST are zeros

except for the ¯rst r ones. Denote � ¼ ½’1; . . . ; ’r� to be the matrix composed of the

¯rst r orthonormal eigenvectors which correspond to positive eigenvalues. We call

the PCA which uses the matrix � as the transformation matrix, the full rank PCA,

abbreviated as FR-PCA. FR-PCA uses ��Tx ¼P r
i¼1ð’T

i xÞ’i as the representation

of a vector x.

Obviously, the representation derived by FR-PCA is also an approximation of the

original sample. While compressing d-dimensional original sample vectors into
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r-dimensional feature vectors, FR-PCA might lose some information present in

original samples. Figure 1(a) is an original sample image from the ORL11 face image

database and Fig. 1(b) is a two-dimensional display of the compressed representation

derived by FR-PCA for the same sample. The transformation matrix is calculated by

using all 400 samples of the database as training samples.

In the sense of data compression, FR-PCA is lossy because it loses a lot of detailed

information of the original sample. However, as a dimension reduction or data pre-

processing method, we will show in the following sections that FR-PCA retains all

discriminantly informative features.

In undersampled classi¯cation of high-dimensional data such as face recognition,

the dimension of original samples, d, is much larger than the size of the training samples

N. Moreover, the transformation matrix � of FR-PCA can be readily calculated by

using the singular value decomposition theorem as in Ref. 1. Thus, in general, FR-PCA

plus a classi¯cation algorithm is much more e±cient than the classi¯cation algorithm

itself. This is also con¯rmed by our experimental results presented in Sec. 5.

The detailed description for FR-PCA is presented in Algorithm 1.

3. Impact of FR-PCA on Multi-Category Classi¯cation Algorithms

3.1. Lemmas and corollaries

Suppose S � Rd is an n-dimensional (n < d) subspace, and w1; . . . ;wn 2 S an or-

thonormal basis of S. Let symbol W 2 Rd�n denote the matrix ½w1; . . . ;wn�. Since
rankðWWT Þ ¼ rankðW Þ ¼ n, so WWT 6¼ Id, where Id is the identity matrix of order

d. Therefore, the equation WWTx ¼ x is not true for x 2 Rd in general. However,

the following lemma tells us that if x 2 S, we can always gain it by reversing its

projection WTx.

(a) (b)

Fig. 1. (a) An original sample from the ORL and (b) the approximation by FR-PCA.
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Lemma 1. For any vector x 2 S, the equation WWTx ¼ x holds.

Proof. Since x 2 S and w1; . . . ;wn is an orthonormal basis of S, there are real

numbers x1; . . . ;xn such that x ¼Pn
i¼1 xiwi.

Therefore,

WWTx ¼ ½w1; . . . ;wn�
wT

1

..

.

wT
n

2
664

3
775X

n

i¼1

xiwi

¼ ½w1; . . . ;wn�

Xn
i¼1

xiw
T
1wi

..

.

Xn
i¼1

xiw
T
nwi

2
666666664

3
777777775

¼ ½w1; . . . ;wn�
x1

..

.

xn

2
64

3
75 ¼ x:

This lemma is very important and we will repeatedly appeal to it when we prove

corollaries, theorems and other lemmas in this paper.

Corollary 1 immediately follows Lemma 1.

Impact of FR-PCA on Face Recognition Algorithms
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Corollary 1. For any vector x 2 S, it follows that jjWTxjj ¼ jjxjj, where jj � jj is the
Euclidean norm.

Proof. jjWTxjj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðWTxÞT ðWTxÞp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT ðWWTxÞp ¼Lemma1 ffiffiffiffiffiffiffiffiffi

xTx
p

¼ jjxjj.
This corollary tells us that the linear transformation W whose column vectors are

orthonormal does not change the length of an arbitrary vector in the subspace S

spanned by it.

Lemma 2. Let u1; . . . ;uN 2 Rd be a set of training samples as before, and m,

the global mean as de¯ned in (2). Denote vi ¼ ui �m, i ¼ 1; . . . ;N, and SN ¼
spanðfv1; . . . ;vNgÞ, the subspace generated by the vector set fv1; . . . ;vNg. Then, the
column vectors of the transformation matrix � of FR-PCA is an orthonormal basis of

the subspace SN .

Proof. We ¯rst prove that each eigenvector of ST which corresponds to a positive

eigenvalue belongs to the subspace SN .

Denote ’ to be the eigenvector of ST which corresponds to the eigenvalue

�ð� > 0Þ, then we have

’ ¼ 1

�
ST’ ¼ 1

�

XN
i¼1

ðui �mÞðui �mÞT’ ¼ 1

�

XN
i¼1

viv
T
i ’: ð3Þ

Let

ai ¼
1

�
vT

i ’; i ¼ 1; . . . ;N: ð4Þ

Substitute (4) into (3) and it follows that ’ ¼PN
i¼1 aivi 2 SN .

This indicates that S � SN , where S is the subspace spanned by all eigenvectors of

ST which correspond to positive eigenvalues.

On the other hand, we have

dimðSÞ ¼ rankðST Þ ¼ rank
XN
i¼1

ðui �mÞðui �mÞT
 !

¼ rankðHtH
T
t Þ ¼ rankðHtÞ ¼ dimðSNÞ;

where Ht ¼ ½u1 �m; . . . ;uN �m� ¼ ½v1; . . . ;vN � is the precursor of the total scatter
matrix.

Thus, we can conclude that S ¼ SN .

In view of the fact that the column vectors of � is an orthonormal basis of the

subspace S, we complete the proof of the lemma.

3.2. Two theorems for FR-PCA transformation

Theorem 1. The Euclidean distance between each pair of training samples is equal to

the Euclidean distance between their projections under an FR-PCA transformation.

F. Song et al.

1256005-6



Proof. For two arbitrary training samples xi;xj 2 fu1; . . . ;uNg, we have

xi � xj ¼ ðxi �mÞ � ðxj �mÞ ¼ vi � vj 2 SN :

According to Corollary 1 and Lemma 2, it follows that

dð�Txi;�
TxjÞ ¼ jj�T ðxi � xjÞjj ¼ jjxi � xjjj ¼ dðxi;xjÞ:

Theorem 1 indicates that the FR-PCA transformation preserves the Euclidean dis-

tance between each pair of training samples.

Theorem 2. For two arbitrary training samples xi;xj 2 fu1; . . . ;uNg, and any test

sample x 2 Rd, it follows that dðx;x1Þ < dðx;x2Þ if and only if dð�Tx;�Tx1Þ <
dð�Tx;�Tx2Þ.

Proof. We rewrite the vector x as the sum of two vectors, i.e. x ¼ �þ �, where

� 2 SN ; � 2 S?
N , and S?

N is the orthogonal complementary of the subspace SN .

Since

dðx;xiÞ ¼ jjx� xijj ¼ jj�� ðxi �mÞ þ � �mjj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jj�� ðxi �mÞjj2 þ jj� �mjj2 þ 2ð� �mÞT ½�� ðxi �mÞ�

p
;

it follows that

dðx;xiÞ < dðx;xjÞ () jj�� ðxi �mÞjj2 � 2ð� �mÞTxi

< jj�� ðxj �mÞjj2 � 2ð� �mÞTxj:

On the other hand, since

dð�Tx;�TxiÞ
¼ jj�T ðx� xiÞjj ¼ jj�T ½�� ðxi �mÞ þ � �m�jj
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jj�T ½�� ðxi �mÞ�jj2 þ jj�T ð� �mÞjj2 þ 2ð� �mÞT��T ½�� ðxi �mÞ�
p

;

it follows that

dð�Tx;�TxiÞ < dð�Tx;�TxjÞ
() jj�T ½�� ðxi �mÞ�jj2 � 2ð� �mÞT��Txi

< jj�T ½�� ðxj �mÞ�jj2 � 2ð� �mÞT��Txj

()
Lemma 2; Corollary 1

jj�� ðxi �mÞjj2 � 2ð� �mÞT��T ðxi �mÞ
< jj�� ðxj �mÞjj2 � 2ð� �mÞT��T ðxj �mÞ

()
Lemmas 1 & 2

jj�� ðxi �mÞjj2 � 2ð� �mÞT ðxi �mÞ
< jj�� ðxj �mÞjj2 � 2ð� �mÞT ðxj �mÞ
() jj�� ðxi �mÞjj2 � 2ð� �mÞTxi < jj�� ðxj �mÞjj2 � 2ð� �mÞTxj

() dðx;xiÞ < dðx;xjÞ:

Thus, we complete the proof of the theorem.

Impact of FR-PCA on Face Recognition Algorithms
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Theorem 2 tells us that the FR-PCA transformation does not change the relative

spatial distributions of all samples (including both training and test samples).

3.3. Impact of FR-PCA on the recognition accuracy of k-NN

It is well known that the k-NN algorithm classi¯es a test sample by a majority vote of

its neighbors, with the test sample being assigned to the class most common amongst

its k nearest training samples. According to Theorem 2, it is easy to conclude that

training samples x1; . . . ;xk are the k nearest neighbors of a test sample x if and only

if �Tx1; . . . ;�
Txk are the k nearest neighbors of �Tx. This indicates that for a given

positive integer k, the class label of �Tx is always the same as the one of x assigned

by the k-NN classi¯er.

Since the NN (nearest neighbor) classi¯er is a special instance of k-NN classi¯ers,

based on above discussion, we know that the FR-PCA transformation does not

change the recognition accuracy of an NN, which is the most popular classi¯er used

in face recognition.

3.4. The impact of FR-PCA on the recognition accuracy of MD

The MD classi¯er assigns a test sample x to the class whose centroid (i.e. the mean of

samples from the class) is nearest to x.

Assume u1; . . . ;uN 2 Rd to be all training samples, and u
ðiÞ
1 ; . . . ;u

ðiÞ
Ni

and u
ðjÞ
1 ;

. . . ;u
ðjÞ
Nj

to be all training samples from the ith and the jth classes, respectively.

Denote mi ¼ 1
Ni

PNi

k¼1 u
ðiÞ
k and mj ¼ 1

Nj

PNj

k¼1 u
ðjÞ
k to be the centroids of the ith and

jth classes.

Since mi �m ¼ 1
Ni

PNi

k¼1ðu ðiÞ
k �mÞ 2 SN and mj �m 2 SN , it is obvious that

dðx;miÞ < dðx;mjÞ () dðx�m;mi �mÞ < dðx�m;mj �mÞ
()Theorem 2

dð�T ðx�mÞ;�T ðmi �mÞÞ
< dð�T ðx�mÞ;�T ðmj �mÞÞ
() dð�Tx;�TmiÞ < dð�Tx;�TmjÞ:

This indicates that the class label of �Tx is always the same as the one of x assigned

by the MD classi¯er. Thus, the FR-PCA transformation does not change the rec-

ognition accuracy of MD.

4. Impact of FR-PCA on Binary Classi¯cation Algorithms

Unlike k-NN and MD which can be directly applied to multi-category classi¯cation,

SVM, LMLP, and MSD are all binary classi¯ers in nature. There are three steps to

apply a binary classi¯cation algorithm, say, SVM to a multi-category classi¯cation

problem. At ¯rst, we have to break a multi-category classi¯cation problem into a

series of binary ones. There are mainly three decomposition strategies: \one-vs-one",

\one-vs-rest", and \DAG".10 Then, we train an SVM classi¯er for each of these

F. Song et al.
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binary classi¯cation problems. Finally, we combine class labels assigned by all of

these SVM classi¯ers into one for a given test sample. If we can prove that for a given

test sample in each binary classi¯cation problem, the class label assigned by the SVM

classi¯er trained on original samples is the same as the one assigned by the SVM

classi¯er trained on FR-PCA transformed samples, we can conclude that FR-PCA

has no impact on the recognition accuracy of SVM regardless of the decomposition

strategy used.

4.1. The impact of FR-PCA on the recognition accuracy of SVM

To clearly discuss SVM2,27 and other binary classi¯cation algorithms, we need to

introduce a new set of symbols.

Suppose x1; . . . ;xn 2 fu1; . . . ;uNg are training samples for a certain binary

classi¯cation problem. Their class labels are y1; . . . ; yn 2 f�1; 1g, respectively. The
trained SVM classi¯er is de¯ned as fðxÞ ¼ signðwTxþ bÞ which assigns a test

sample x to class 1 if wTxþ b > 0 or class �1 if wTxþ b � 0. The weight w and the

bias b constitute the unique optimal solution of the following quadratic programming

problem:

Minimize:

1

2
jjwjj2 þ C

Xn
i¼1

�i; ð5Þ

subject to:

yiðwTxi þ bÞ � 1� �i; i ¼ 1; . . . ;n; ð6Þ
where C is a parameter which balances the training error against the margin between

two trained separating hyperplanes.

Solving the optimization model is equivalent to solving the following Wolfe dual

of the Lagrangian formulation of the quadratic programming problem2:

Maximize:

X
i

�i �
1

2

X
i;j

�i�jyiyjx
T
i xj; ð7Þ

subject to:

0 � �i � C; ð8ÞX
i

�iyi ¼ 0: ð9Þ

The solution is given by

w ¼
X
i

�iyixi; ð10Þ

Impact of FR-PCA on Face Recognition Algorithms
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and

b ¼ yj �wTxj; ð11Þ
for any j, if 0 < �j < C.

Similarly, training an SVM classi¯er on reduced samples �Tx1; . . . ;�
Txn is

equivalent to solving the following quadratic programming problem:

Maximize: X
i

�i �
1

2

X
i;j

�i�jyiyjð�TxiÞT ð�TxjÞ; ð12Þ

subject to constraints (8) and (9).

The solution is given by

w1 ¼
X
i

�iyi�
Txi; ð13Þ

and

b1 ¼ yj �wT
1�

Txj; ð14Þ
for any j, if 0 < �j < C.

Since X
i;j

�i�jyiyjð�TxiÞT ð�TxjÞ

¼
X
i

�iyi�
Txi

 !
T X

j

�jyj�
Txj

 !

¼
X
i

�iyi�
T ðxi �mÞ þ

X
i

�iyi

 !
�Tm

" #
T

�
X
j

�jyj�
T ðxj �mÞ þ

X
j

�jyj

 !
�Tm

" #

¼ð9Þ
X
i

�iyi�
T ðxi �mÞ

" #
T X

j

�jyj�
T ðxj �mÞ

" #

¼
X
i;j

�i�jyiyjðxi �mÞT��T ðxj �mÞ

¼Lemma 1
X
i;j

�i�jyiyjðxi �mÞT ðxj �mÞ

¼
X
i

�iyixi �
X
i

�iyi

 !
m

" #
T X

j

�jyjxj �
X
j

�jyj

 !
m

" #

¼ð9Þ
X
i;j

�i�jyiyjx
T
i xj

F. Song et al.
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thus we can rewrite (12) as (7). This indicates that the objective functions of these

two Wolfe duals are identical.

In consideration of the fact that they are subjected to the same constraints, they

must share a unique optimal solution �1; . . . ; �n.

Now, suppose that w0 and b0 are the weight and bias trained by SVM on original

training samples and �1; . . . ; �n the optimal solution of the Wolfe dual of its

Lagrangian formulation. Then, we havew0 ¼
P
i

�iyixi and b0 ¼ yj �wTxj for some

j, if 0 < �j < C.

Since �Tw0 ¼
P

i �iyi�
Txi, thus, �

Tw0 is just the weight trained by the SVM

on samples �Tx1; . . . ;�
Txn.

According to (14), b1 can be computed as follows:

b1 ¼ yj �wT
1�

Txj ¼ yj � ð�Tw0Þ�Txj ¼ yj �
X
i

�iyi�
Txi

 !
T

�Txj

¼ yj �
X
i

�iyix
T
i ��

Txj ¼ð9Þ yj �
X
i

�iyiðxi �mÞT��Txj

¼Lemma 1
yj �

X
i

�iyiðxi �mÞTxj ¼ð9Þ yj �
X
i

�iyix
T
i xj ¼ yj �wT

0 xj ¼ b0:

To sum up the above discussions, we ¯nd that if f0ðxÞ ¼ signðwT
0 xþ b0Þ is the

classi¯er trained by SVM on the original samples, f1ðxÞ ¼ signðwT
0�xþ b0Þ must be

the classi¯er trained by SVM on the FR-PCA transformed samples.

Furthermore, it is not di±cult to prove that if f1ðxÞ ¼ signðwT
1 xþ b1Þ is the

classi¯er trained by SVM on the transformed samples by FR-PCA, f0ðxÞ ¼
signðwT

1�
Txþ b1Þ must be the classi¯er trained by SVM on the original samples.

Finally, to prove that the FR-PCA transformation does not change the recog-

nition accuracy of SVM, we only need to prove that

f0ðxÞ ¼ signðwT
0 xþ b0Þ ¼ signðwT

0��
Txþ b0Þ ¼ f1ð�TxÞ: ð15Þ

Since

wT
0��

Tx ¼
X
i

�iyixi

 !
T

��Tx

¼
X
i

�iyix
T
i ��

Tx

¼ð9Þ
X
i

�iyiðxi �mÞT��Tx

¼Lemma 1
X
i

�iyiðxi �mÞTx

¼ð9Þ
X
i

�iyix
T
i x ¼ wT

0 x:

So (15) always holds.
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Thus, we have completely proven that as a data preprocessing method, FR-PCA

has no impact on the recognition accuracy of SVM algorithms.

4.2. Impact of FR-PCA on the recognition accuracy of LMLP

An LMLP24 algorithm is specially designed for undersampled classi¯cation problems.

Before a formal discussion, we need to introduce several notations.

Let !1 and !2 be the set of training samples with positive and negative class

labels, respectively, and m1 and m2 the mean vectors for samples from the positive

class !1 and negative class !2, respectively. The between-class scatter matrix (Sb)

and within-class scatter matrix (Sw) are de¯ned as:

Sb ¼ ðm1 �m2Þðm1 �m2ÞT ; ð16Þ

Sw ¼
X2
i¼1

X
x2!i

ðx�miÞðx�miÞT : ð17Þ

The weight w0 trained by LMLP is the unique optimal solution of the following

optimization model.

Maximize:

wTSbw

wTw
; ð18Þ

subject to:

wTSww ¼ 0: ð19Þ
Once the weight w0 is derived, the bias b0 is calculated by using the formula

b0 ¼ �wT
0 ðm1 þm2Þ: ð20Þ

Now, by mapping training samples to their projections by using the transformation

matrix of FR-PCA, we obtain a training sample �Tx1; . . . ;�
Txn in the FR-PCA

transformed space.

The weight w1 trained by LMLP in the FR-PCA transformed space is a unique

optimal solution of the following optimization model.

Maximize:

wTS �
b w

wTw
; ð21Þ

subject to:

wTS �
ww ¼ 0: ð22Þ

Once the weight w1 is derived, the bias b1 is calculated by using the formula

b1 ¼ �wT
1 ðm�

1 þm�
2 Þ; ð23Þ

F. Song et al.
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where S �
b , S �

w , m�
1 , and m�

2 are the between-class scatter matrix, within-class

scatter matrix, mean vectors for samples from the positive class, and mean vector for

samples from the negative class, respectively, in the FR-PCA transformed space.

It is well known that6

S �
b ¼ �TSb�; S �

w ¼ �TSw�; ð24Þ
and

m�
i1 ¼ �Tmi; i ¼ 1; 2: ð25Þ

In the following paragraphs, we will prove that wT
0 xþ b0 > 0 if and only if

wT
1�

Txþ b1 > 0.

First, we will prove three lemmas.

Lemma 3. ��TSb ¼ Sb;��
TSw ¼ Sw.

Proof.

��TSb ¼ ��T ðm1 �m2Þðm1 �m2ÞT

¼ ��T ½ðm1 �mÞ � ðm2 �mÞ�ðm1 �m2ÞT

¼ ½��T ðm1 �mÞ � ��T ðm2 �mÞ�ðm1 �m2ÞT

¼Lemma 1 ½ðm1 �mÞ � ðm2 �mÞ�ðm1 �m2ÞT
¼ ðm1 �m2Þðm1 �m2ÞT ¼ Sb;

��TSw ¼ ��T
X2
i¼1

X
x2!i

ðx�miÞðx�miÞT

¼ ��T
X2
i¼1

X
x2!i

½ðx�mÞ � ðmi �mÞ�ðx�miÞT

¼
X2
i¼1

X
x2!i

½��T ðx�mÞ � ��T ðmi �mÞ�ðx�miÞT

¼Lemma 1
X2
i¼1

X
x2!i

½ðx�mÞ � ðmi �mÞ�ðx�miÞT

¼
X2
i¼1

X
x2!i

ðx�miÞðx�miÞT ¼ Sw:

Lemma 4. Sb��
T ¼ Sb, Sw��

T ¼ Sw.

Proof. Based on Lemma 3 and the symmetrical properties of Sb and Sw, the

conclusion is obvious.

Lemma 5. For any w 2 Rd, if wTSww ¼ 0, then ��Tw ¼ w.

Impact of FR-PCA on Face Recognition Algorithms
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Proof. Based on (17) we know that

wTSww ¼ 0 () 8 i 2 f1; 2g; 8 x 2 !i;w
T ðx�miÞ ¼ 0;

since

x�mi ¼ ðx�mÞ � ðmi �mÞ 2 SN :

Then, from the condition wTSww ¼ 0, we can conclude that w is a linear

combination of x�mi;x 2 !i; i ¼ 1; 2. Thus, w 2 SN .

According to Lemma 1, it is obvious that ��Tw ¼ w.

Now, we begin to prove that w1 ¼ �Tw0.

Since

wTSww ¼ 0 ()Lemma 3
wT��TSww ¼ 0

()Lemma 4
wT��TSw��

Tw ¼ 0

() ð�TwÞT ð�TSw�Þð�TwÞ ¼ 0

()ð24Þ ð�TwÞTS �
wð�TwÞ ¼ 0

and for any w 2 Rd which satis¯es wTSww ¼ 0, we have

wTSbw

wTw
¼Lemma 3 wT��TSbw

wTw

¼Lemma 4 wT��TSb��Tw

wTw

¼Lemma 5 wT��TSb��Tw

wT��Tw

¼ ð�TwÞT ð�TSb�Þð�TwÞ
ð�TwÞT ð�TwÞ

¼ð24Þ ð�TwÞTS �
b ð�TwÞ

ð�TwÞT ð�TwÞ :

This indicates that w0 is the optimal solution of the model in (18) and (19) if and

only if �Tw0 is the optimal solution of the model in (21) and (22). Thus, we have

w1 ¼ �Tw0.

Based on this fact, (23), and (25), it is easy to derive that b1 ¼ b0.

Thus, we have completely proven that as a data preprocessing method, FR-PCA

has no impact on the recognition accuracy of LMLP algorithms.

4.3. Impact of FR-PCA on the recognition accuracy of MSD

In contrast to LMLP which can only be used in undersampled classi¯cation pro-

blems, MSD25 can be applied to both small and large sample size recognition tasks.

The weight w0 trained by MSD is the unique optimal solution of the following

optimization model.

F. Song et al.
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Maximize:

wT ðSb � C � SwÞw
wTw

; ð26Þ

where the parameter C is a non-negative real number which balances the objective

function of maximizing the between-class scatter and objective function of mini-

mizing the within-class scatter.

In fact, w0 is the unitary eigenvector of the matrix ðSb � C � SwÞ that corresponds
to the largest eigenvalue �0.

Once w0 is calculated, the bias b0 is computed by using (20).

The weight w1 trained by MSD in the FR-PCA transformed space is the unitary

eigenvector of the matrix ðS �
b � C � S �

wÞ that corresponds to the largest eigenvalue �1.

Once w1 is calculated, the bias b1 is computed by using (23).

First, we prove the following lemma.

Lemma 6. If w is an eigenvector of the matrix ðSb � C � SwÞ that corresponds to a

nonzero eigenvalue then ��Tw ¼ w.

Proof. We only need to prove that w 2 SN .

Since w is an eigenvector of the matrix ðSb � C � SwÞ that corresponds to a non-

zero eigenvalue, there is a real number � 6¼ 0 such that

ðSb � C � SwÞw ¼ �w: ð27Þ
We divide the vector w into two parts, that is,

w ¼ �þ �; ð28Þ
where � 2 SN , � 2 S?

N , S
?
N is the orthogonal complimentary of the subspace SN .

Substituting (28) into (27) and simplifying, it follows that

� ¼ 1

�
½ðSb � C � SwÞ�� ��þ ðSb � C � SwÞ��: ð29Þ

Since

ðSb � C � SwÞ� ¼ ðm1 �m2Þðm1 �m2ÞT�� C

�
X2
i¼1

X
x2!i

ðx�miÞðx�miÞT�

¼ ½ðm1 �mÞ � ðm2 �mÞ�½ðm1 �m2ÞT�� � C

�
X2
i¼1

X
x2!i

½ðx�mÞ � ðmi �mÞ�½ðx�miÞT�� 2 SN :

In combination with (29), we can conclude that � 2 SN .

In consideration of the fact that � 2 S?
N , thus � ¼ 0, and as a result w 2 SN .

According to Lemma 1, the equation ��Tw ¼ w holds.

Now, we begin to prove that w1 ¼ �Tw0.

Impact of FR-PCA on Face Recognition Algorithms
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Suppose w is an eigenvector of the matrix ðSb � C � SwÞ that corresponds to

eigenvalue � (� 6¼ 0Þ.
According to Lemmas 3, 4 and 6 we have

� ¼ wT ðSb � C � SwÞw
wTw

¼ wT��T ðSb � C � SwÞ��Tw

wT��Tw

¼ð24Þ ð�TwÞT ðS �
b � C � S �

wÞð�TwÞ
ð�TwÞT ð�TwÞ :

This indicates that �Tw is an eigenvector of the matrix ðS �
b � C � S �

wÞ that

corresponds to eigenvalue �. In contrary, if w is an eigenvector of the matrix ðS �
b �

C � S �
wÞ that corresponds to eigenvalue �, it is obvious that �w is an eigenvector of

the matrix ðSb � C � SwÞ that corresponds to eigenvalue �.

So w1 ¼ �Tw0. Similar to the proof in Sec. 4.2, we have b1 ¼ b0.

Thus, we have completely proven that as a data preprocessing method, FR-PCA

has no impact on the recognition accuracy of MSD algorithms.

5. Impact of FR-PCA on E±ciencies of Classi¯cation Algorithms

In Secs. 3 and 4 we theoretically prove that the transformation by FR-PCA does not

change the recognition accuracies of the k-NN, MD, SVM, LMLP, and MSD clas-

si¯cation algorithms. In this section, we will demonstrate that FR-PCA can greatly

promote the e±ciencies of these ¯ve classi¯ers through a series of experimental

studies conducted on ORL, AR, FERET, and Extended Yale B face image data-

bases. ORL database is collected by AT&T Laboratories between April 1992 and

April 1994. It has a total of 400 images, 10 di®erent images for each of 40 individuals.

All images are grayscale and normalized with a resolution of 112� 92. To avoid the

over°ow problem encountered by MSD, we used a pixel grouping4 technique to

reduce the image resolution to 56� 46 in our experiment. In each of the ten runs in

the experiment, we used ¯ve images of each person for training and the remaining

¯ve for testing. The images of each person numbered 1 to 5, 2 to 6; . . . ; 10 to 4 are

used as training samples for the ¯rst, second, . . . , and the tenth run, respectively.

Table 1 lists total computational times consumed by various classi¯cation algo-

rithms (including times consumed by FR-PCA if applicable) for each of the ten runs

on ORL database. In this experiment and the following other experiments, a one-vs-

one decomposition strategy10 is adopted. The parameter Cs for both SVM and MSD

take 100. The SVM code used in the experiment comes from Ref. 19.

From Table 1, we ¯nd that FR-PCA can greatly promote the e±ciencies of the

NN, SVM, LMLP, and MSD classi¯cation algorithms on ORL face image database.

The reason why FR-PCA fails to promote the e±ciency of MD is that in this small

database MD is so e±cient that the time saved by FR-PCA cannot compensate for

the time consumed by FR-PCA itself.
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The AR20 face image database contains over 4000 color face images of 126 people

(70 men and 56 women), including frontal views of faces with di®erent facial

expressions, lighting conditions and occlusions. The pictures of most persons were

taken in two sessions (separated by two weeks). Each session contains 13 color images

and 120 individuals (65 men and 55 women) participated in both sessions. The images

of these 120 individuals were selected and used in our experiment. Only the full facial

images were considered here. That is, there are 1680 images in total, 14 di®erent

images for each of the 120 individuals. All images are grayscale and normalized with a

resolution of 50� 40 and preprocessed using histogram equalization. In the experi-

ment, the seven images taken in the ¯rst session for each individual are used for

training, the seven images taken in the second session are used for test.

Table 2 lists total computational times consumed by various classi¯cation algo-

rithms (including times consumed by FR-PCA if applicable) on AR face image

database.

From Table 2, we ¯nd that FR-PCA can promote the e±ciencies of all of these

¯ve classi¯cation algorithms on AR face image database.

The subset of the FERET21 face image database used in the experiment

includes 1400 images of 200 individuals. There are seven di®erent images of each

person. All images are grayscale and normalized with a resolution of 40� 40 and

preprocessed using histogram equalization. The experiments use four images of each

person for training and the remaining three images for test. The images of each

person numbered 1 to 4, 2 to 5; . . . ; 7 to 3 are used as training samples.

Table 3 lists total computational times consumed by various classi¯cation algo-

rithms (including times consumed by FR-PCA if applicable) for each of the seven

runs on the FERET face image database.

From Table 3, we ¯nd again that FR-PCA can greatly promote the e±ciencies of

all these ¯ve classi¯cation algorithms on FERET face image database.

The Extended Yale B database consists of 2414 frontal-face images of 38 indivi-

duals.7 The cropped and normalized 192� 168 face images were captured under

various laboratory-controlled lighting conditions. To make the MSD algorithm

applicable, we downsample the original images to 48� 42. For each individual,

Table 2. Time consumed by various approaches

on AR face image database (sec.).

NN 52.70

FR-PCAþNN 25.46

MD 6.770
FR-PCAþMD 3.338

SVM 59.23

FR-PCAþSVM 24.62

LMLP 275.9
FR-PCAþLMLP 233.1

MSD 4890

FR-PCAþMSD 1040

F. Song et al.

1256005-18



T
ab

le
3.

T
im

e
co
n
su
m
ed

b
y
v
ar
io
u
s
ap

p
ro
ac
h
es

fo
r
ea
ch

of
th
e
se
v
en

ru
n
s
on

F
E
R
E
T

fa
ce

im
ag
e
d
at
ab

as
e
(s
ec
.)
.

N
N

10
0.
9

91
.1
7

87
.5
3

87
.8
6

87
.9
4

87
.8
1

88
.1
6

9
0
.2
0

F
R
-P
C
A
þN

N
20

.8
1

17
.9
1

17
.9
2

17
.9
1

17
.9
4

17
.8
9

25
.5
0

1
9
.4
1

M
D

13
.2
5

16
.6
4

16
.5
8

16
.5
0

16
.6
9

16
.6
1

16
.6
7

1
6
.1
3

F
R
-P
C
A
þM

D
4.
62

5
4.
35

9
4.
37

5
4.
37

5
4.
37

5
4.
35

9
6.
31

3
4
.6
8
3

S
V
M

12
0.
6

12
5.
8

12
5.
1

12
5.
5

12
5.
4

12
5.
8

12
5.
7

1
2
4
.8

F
R
-P
C
A
þS

V
M

71
.5
6

66
.1
4

66
.2
3

66
.4
2

66
.6
9

66
.5
3

11
3.
7

7
3
.8
9

L
M
L
P

51
3.
9

56
6.
8

54
6.
4

56
7.
5

55
7.
5

54
9.
0

56
6.
3

5
5
2
.5

F
R
-P
C
A
þL

M
L
P

42
4.
4

35
8.
0

35
9.
5

36
4.
6

35
7.
7

36
2.
1

79
5.
7

4
3
1
.7

M
S
D

10
58

0
10

54
0

10
54
0

10
54
0

10
54
0

10
55

0
11

55
0

1
0
6
9
0

F
R
-P
C
A
þM

S
D

31
52

29
54

29
55

29
45

29
45

29
51

38
20

3
1
0
3

Impact of FR-PCA on Face Recognition Algorithms

1256005-19



we randomly selected half of his/her images for training (i.e. about 32 images per

individual) and the rest were left for testing. The total number of training samples

is 1205, and the total number of test samples is 1209.

Table 4 lists total computational times consumed by various classi¯cation algo-

rithms (including times consumed by FR-PCA if applicable) on Extended Yale B

face image database.

From Table 4, we ¯nd that FR-PCA can promote the e±ciencies of all these ¯ve

classi¯cation algorithms on Extended Yale B face image database.

6. Conclusion and Further Work

Through the above rigorous mathematical deduction, we have proven that FR-PCA

can be used as a data preprocessing approach without the risk of altering the

recognition accuracy of the succeeding classi¯cation if a k-NN, MD, SVM, LMLP,

or MSD algorithm is used. In addition, extensive experimental studies conducted

on benchmark face image databases such as ORL, AR, FERET, and Extended

Yale B demonstrate that FR-PCA can greatly promote the e±ciencies of these ¯ve

classi¯cation algorithms.

Similar to FR-PCA, (nonfull rank) PCA is commonly used as a data preproces-

sing tool to make certain classi¯ers applicable to high-dimensional data or to pro-

mote their e±ciencies. Unlike FR-PCA, (nonfull rank) PCA might change the

recognition accuracy of classi¯er used in the classi¯cation. The in°uence of nonfull

rank PCA on the recognition accuracy of a classi¯er may be positive or negative.

What important is that one cannot know how to select the parameter of (nonfull

rank) PCA, i.e. the number of principal components such that the in°uence is pos-

itive. FR-PCA let us avoid the trouble of selecting the value of the parameter.

Along each component that corresponds to a zero eigenvalue, all training samples

share the same projection, and thus the component makes no contribution in dis-

criminating classes in terms of Euclidean distance. We have proved that FR-PCA

does retain all discriminantly informative features for k-NN, MD, SVM, LMLP, and

MSD classi¯ers. An immediate question is whether FR-PCA can retain all

Table 4. Time consumed by various approaches on

Extended Yale B face image database (sec.).

NN 112.9
FR-PCAþNN 85.38

MD 3.167

FR-PCAþMD 2.418

SVM 24.90
FR-PCAþSVM 15.26

LMLP 36.06

FR-PCAþLMLP 32.11
MSD 17780

FR-PCAþMSD 7706

F. Song et al.
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discriminantly informative features for other Euclidean distance-based classi¯ers,

such as quadratic Bayesian and neural networks. Although one might guess that FR-

PCA does not change the recognition accuracy of any Euclidean distance-based

classi¯ers, rigorous mathematical proofs for these guesses are needed.

Sparse representation-based classi¯cation (SRC)28 is a completely new type of clas-

si¯cation rule in face recognition. Reported experimental results in literature show that

SRC outperforms many well-known facial classi¯ers such as NN and SVM. Another

interesting question is whether FR-PCA will change the recognition accuracy of SRC.
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